A lipidomics study reveals hepatic lipid signatures associating with deficiency of the LDL receptor in a rat model

نویسندگان

  • Hong Yu Wang
  • Chao Quan
  • Chunxiu Hu
  • Bingxian Xie
  • Yinan Du
  • Liang Chen
  • Wei Yang
  • Liu Yang
  • Qiaoli Chen
  • Bin Shen
  • Bian Hu
  • Zhihong Zheng
  • Haibo Zhu
  • Xingxu Huang
  • Guowang Xu
  • Shuai Chen
چکیده

The low-density lipoprotein receptor (LDLR) plays a critical role in the liver for the clearance of plasma low-density lipoprotein (LDL). Its deficiency causes hypercholesterolemia in many models. To facilitate the usage of rats as animal models for the discovery of cholesterol-lowering drugs, we took a genetic approach to delete the LDLR in rats aiming to increase plasma LDL cholesterol (LDL-C). An LDLR knockout rat was generated via zinc-finger nuclease technology, which harbors a 19-basepair deletion in the seventh exon of the ldlr gene. As expected, deletion of the LDLR elevated total cholesterol and total triglyceride in the plasma, and caused a tenfold increase of plasma LDL-C and a fourfold increase of plasma very low-density lipoprotein (VLDL-C). A lipidomics analysis revealed that deletion of the LDLR affected hepatic lipid metabolism, particularly lysophosphatidylcholines, free fatty acids and sphingolipids in the liver. Cholesterol ester (CE) 20:4 also displayed a significant increase in the LDLR knockout rats. Taken together, the LDLR knockout rat offers a new model of hypercholesterolemia, and the lipidomics analysis reveals hepatic lipid signatures associating with deficiency of the LDL receptor.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Effect of Ubiquinol-10 on the Affinity of LDL to Its Receptor: A Model for Prevention of Atherogenesis

The affinity of low density lipoprotein(LDL) to its receptor is very important, because most of LDL-uptake pathway is done by the LDL receptor and the change in size of LDL particle and the modification in its components may affect the LDL affinity for its receptor. In this study, the effects of a powerful lipid-soluble antioxidant “ubiquinol-10” have been investigated on the affinity of LDL to...

متن کامل

Effect of Ubiquinol-10 on the Affinity of LDL to Its Receptor: A Model for Prevention of Atherogenesis

The affinity of low density lipoprotein(LDL) to its receptor is very important, because most of LDL-uptake pathway is done by the LDL receptor and the change in size of LDL particle and the modification in its components may affect the LDL affinity for its receptor. In this study, the effects of a powerful lipid-soluble antioxidant “ubiquinol-10” have been investigated on the affinity of LDL to...

متن کامل

Origanum Majoranum Extract Modulates Gene Expression, Hepatic and Renal Changes in a Rat Model of Type 2 Diabetes

The present study was conducted to test the effect of Origanum Majoranum Extract (OME) of leaves on alterations induced in a model of type 2 diabetic rats. Adult male Wistar rats were fed high fat diet for 3 weeks and injected a single dose of streptozotocin (35 mg/kg) intraperitoneally to induce type 2 diabetic rats. Diabetic rats were given aqueous extract of OME in a dose of 20 mg/kg orally ...

متن کامل

Origanum Majoranum Extract Modulates Gene Expression, Hepatic and Renal Changes in a Rat Model of Type 2 Diabetes

The present study was conducted to test the effect of Origanum Majoranum Extract (OME) of leaves on alterations induced in a model of type 2 diabetic rats. Adult male Wistar rats were fed high fat diet for 3 weeks and injected a single dose of streptozotocin (35 mg/kg) intraperitoneally to induce type 2 diabetic rats. Diabetic rats were given aqueous extract of OME in a dose of 20 mg/kg orally ...

متن کامل

Changes in Biochemical Parameters Related to Lipid Metabolism Following Lithium Treatment in Rat

Lithium is widely used in medicine as an anti-depressive drug. In spite of abundant literature, questions on the side effects of lithium ions are far from being answered. In this study, the effects of lithium on biochemical parameters related to lipid metabolism were investigated. Male Wistar rats were treated with different doses of lithium for a period of up to 60 days. Blood samples were col...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 5  شماره 

صفحات  -

تاریخ انتشار 2016